Detecting biotechnology industry's earnings management using Bayesian network, principal component analysis, back propagation neural network, and decision tree

نویسندگان

  • Fu-Hsiang Chen
  • Der-Jang Chi
  • Yi-Cheng Wang
چکیده

a r t i c l e i n f o JEL classification: G3 C8 M4 M1 Keywords: Data mining Bayesian network (BN) Back propagation neural network (BPN) Principal component analysis (PCA) C5.0 decision tree Accrual earnings management The characteristic of long value chain, high-risk, high cost of research and development are belong to high knowledge based content in the biotech medical industry, and the reliability of biotechnology industry's financial statements and the earnings management behavior conducted by the management in their accrual manipulation have been a critical issue. In recent years, some studies have used the data mining technique to detect earnings management , with which the accuracy has therefore risen. As such, this study attempts to diagnose the detecting biotechnology industry earnings management by integrating suitable computing models, we first screened the earnings management variables with the principal component analysis (PCA) and Bayesian network (BN), followed by further constructing the integrated model with the back propagation neural network (BPN) and C5.0 (decision tree) to detect if a company's earnings were seriously manipulated. The empirical results show that combining the BN screening method with C5.0 decision tree has the best performance with an accuracy rate of 98.51%. From the rules set in the final additional testing of the study, it is also found that an enterprise's prior period discretionary accruals play an important role in affecting the serious degree of accrual earnings management. Nowadays biotechnology is not only a burgeoning industry but also a newest target of investors in the universe. More and more people tend to rely on biotechnology for extending life expectancy or maintaining youth; the potential of the biotechnology industry has greatly improved. Biotechnology industry is characterized of a complicated system , a long value chain, specialized divisions of labor, and a prolonged timeline of product development. The biotechnology company's performance is more difficult to accurately evaluate from traditional financial reports (Kessel and Frank, 2007). Earnings are commonly deemed to be the status of an enterprise's past business performance. Given the fact that the stakeholders of an enterprise (usually including investors, creditors , analysts and customers) cannot be directly aware of the enterprise's operating performance, most of them regard corporate earnings as an important index. As a result, earnings management has turned out to be the major impetus for the management. Nevertheless, if earnings management becomes a norm, financial statement users are very likely to have …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

متن کامل

پیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم

بسیاری از موارد بحران‌های مالی مربوط به شرکت‌های سهامی عام بوده که درحال افزایش است. بسیاری از سرمایه گذاران و اعتباردهندگان در مورد پیش بینی بحران مالی به خصوص زمانی که مدیریت سود رخ می‌دهد مشکلاتی دارند. تحقیقات اخیر به شناسایی عوامل و فاکتورهای مرتبط با مدیریت سود می‌پردازد. بنابراین از طریق آن قادر به تعیین ارتباط میان این عوامل و دستکاری سود هستند. به منظور کاهش ریسک بحران‌های مالی ناشی از...

متن کامل

Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree

Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...

متن کامل

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015